Electricity and Circuits

Opportu	nities for Breadth and Challenge: Practical work, opportunities for A Level crossover in units 12&13		
Links to S	Sequencing for Learning:		
This unit	links to previous work on Y8 P1 Electricity and magnetism		
This unit	prepares pupils for work in CP11 Electromagnetic Induction		
Section	What we are learning (key knowledge)	Key words	Assessment
1	How does the structure of atoms affect the flow of electric current?	Atom, Nucleus,	Prior knowledge
	What are the names and symbols of components used in electric circuits?	Protons, Neutrons,	
	What are the differences between series and parallel circuits?	Electrons	
2	How is electric current measured?	Series, Parallel,	Retrieval Qs of
	What happens to the electric current at a junction in the circuit?	Amperes, Ammeter	keywords
	What is potential difference and how do you measure it?		
3	What is a coulomb?	Potential Difference,	Homework: independent
	What is the connection between the electric current and the amount of charge that flows in a circuit?	Voltage, Volts, Voltmeter	research for poster
	What is the equation that relates electric charge, potential difference and the energy transferred in a		
	circuit?		
4	What is electrical resistance?	Resistance, Ohms, Direct	MUM: poster
	What is the connection between voltage, current and resistance?	Proportion	
	What are the different effects of adding resistors in series and parallel?		
5a	Core practical	Diodes	
	Construct electrical circuits to a) investigate the relationship between potential difference, current and		
	resistance for a resistor and filament lamp and b) test series and parallel circuits using resistors and filament		
	lamps.		
5b	How does potential difference affect current and resistance in fixed resistors, lamps and diodes?		
	How do light intensity and temperature affect resistance in LDRs and thermistors?		
	How are circuits used to explore resistance in lamps, diodes, thermistors and LDRs?		
6	What are the advantages and disadvantages of the heating effect of a current?	Thermal energy, Dissipated,	
	How can the energy transfer that causes the heating effect be explained?		
	How can unwanted energy transfer be reduced in wires?		
7	What is power and what units are used to measure it?	Power, Watts	
	How is power related to the energy used in joules?		
	How can you calculate power when you know current, potential difference and/or resistance?		
8	How is energy transferred from electrical cells or batteries to motors and heating devices?	Direct current, Alternating	
	What is the difference between direct and alternating, for both current and voltage?	current	

he UK domestic electricity supply?		
e and the neutral wires?	Circuit breaker	
rcuits safer?		
en the live, neutral and earth wires?		
		Class assessment sheet
		EUT
		Test feedback sheet
	the UK domestic electricity supply? 'e and the neutral wires? rcuits safer? en the live, neutral and earth wires?	The UK domestic electricity supply? 'e and the neutral wires? 'cuits safer? en the live, neutral and earth wires?

Lacon Childe School Science Department – Physics Scheme of Work – Year 11 TS Topic 11

Static Electricity (TS only)

Opportun	ities for Breadth and Challenge:		
Links to S	equencing for Learning:		
This unit l	nks to previous work on Y8 P1 Electricity and magnetism, Previous Y10 electricity unit		
This unit p	repares pupils for work in CP11 Electromagnetic Induction		
Section	What we are learning (key knowledge)	Key words	Assessment
1 TS only	Static Electricity Theory		
	 Explain how an insulator can be charged by friction, through the transfer of electrons 		
	Explain how the material gaining electrons becomes negatively charged and the material losing		
	electrons is left with an equal positive charge		
	 Recall that like charges repel and unlike charges attract 		
2 TS only	Everyday Static & Other Uses		
	Explain common electrostatic phenomena in terms of movement of electrons, including		
	 shocks from everyday objects 		
	lightning		
	 attraction by induction such as a charged balloon attracted to a wall and a charged comb picking up 		
	small pieces of paper		
	Explain some of the uses of electrostatic charges in everyday situations, including insecticide sprayers		
3 TS only	Earthing & Dangers of Static		
	 Explain how earthing removes excess charge by movement of electrons 		
	Describe some of the dangers of sparking in everyday situations, including fuelling cars, and explain		
	the use of earthing to prevent dangerous build-up of charge		
4 TS only	Electric Fields		
	 Define an electric field as the region where an electric charge experiences a force 		

	 Describe the shape and direction of the electric field around a point charge and between parallel plates and relate the strength of the field to the concentration of lines Explain how the concept of an electric field helps to explain the phenomena of static electricity 	
5 TS only	Revision	Class assessment sheet
	End of Unit Test	EUT
	Test Feedback	Test feedback sheet

Lacon Childe School Science Department – Physics Scheme of Work – Year 11 TS Topic 12&13

Magnetism, The Motor Effect and Electromagnetic Induction

Opportur	nities for Breadth and Challenge: Motor kits		
Links to S	equencing for Learning:		
This unit	links to previous work on Y8 P1 Electricity and magnetism, Y10 Previous unit - Elec	tric circuits	
This unit	prepares pupils for work in GCSE paper		
Section	What we are learning (key knowledge)	Key words	Assessment
1	How are magnets used? What shape are magnetic fields and how can they be plotted? What is the evidence that the Earth has a magnetic field?	Permanent magnet, magnetic materials, magnetic field, induced magnet, plotting compass	Prior knowledge
2	How is the magnetic field around a wire related to the current? What factors affect the strength of the magnetic field around a wire? How does the magnetic field around a wire change when the wire is made into a coil?	Solenoid, electromagnet, temporary magnet	Retrieval Qs of keywords
3	How can electricity and magnetism combine to produce forces? How is the force on a wire in a magnetic field used to make an electric motor turn? How can we calculate the size of the force produced by a current in a magnetic field?	Motor effect, Flemings Left hand rule, magnetic flux density, tesla, F = BII	Homework: independent research for poster
4 TS only	 Motors Explain how the force on a conductor in a magnetic field is used to cause rotation in electric motors 		
5 TS only	Induced current		

	 Explain how to produce an electric current by the relative movement of a magnet and a conductor a on a small scale in the laboratory b in the large-scale generation of electrical energy Explain how electromagnetic induction is used in alternators to generate current which alternates in direction (a.c.) and in dynamos to generate direct current (d.c.) 		
6 TS only	Applications in microphones and speakers Explain the action of the microphone in converting the pressure variations in sound waves into variations in current in electrical circuits, and the reverse effect as used in loudspeakers and headphones		
7	How can you calculate the power in a transformer? How do transformers follow the law of conservation of energy? How can you calculate the current and voltage produced by a transformer?	Transformer, potential difference, electromagnetic induction, induces, primary coil, secondary coil, electric power	MUM: poster
8	How is electricity transmitted around the country? How do transmitters work? What are the factors that affect the size and direction of an induced potential difference?	National grid, transmission lines, step up transformer, step down transformer, alternative current	
9 TS only	 Transformer Equation & Efficiency of National Grid Use the turns ratio equation for transformers to calculate either the missing voltage or the missing number of turns Explain the advantages of power transmission in highvoltage cables (using equations) 	$V_p/V_s = N_p/N_s$	
10	Revision End of Unit Test Test Feedback		Class assessment sheet EUT Test feedback sheet

Lacon Childe School Science Department – Physics Scheme of Work – Year 11 TS Topic 14&15

The Particle Model & Forces and Matter

Opportunities for Breadth and Challenge: Gradient of force/extension graph			
Links to Sequencing for Learning:			
This unit links to previous work on Y8 P1 Electricity and magnetism, Y10 Electric circuits			
This unit prepares pupils for work in GCSE paper			
Section N	Nhat we are learning (key knowledge)	Key words	Assessment

1	Particles and density	Sublimation, states of matter, kinetic	Prior knowledge
	How do the particle arrangements in solids, liquids and gases explain their	theory, compressed, change of state,	
	properties?	conserved, physical change, chemical	
	 What happens to particles when a substance changes state? 	change, density	
	 How can you calculate the density of a substance? 		
2	Core practical – Investigating densities of solids and liquids	Displacement can	Retrieval Qs of
			keywords
3	Energy and change of state.	Thermal energy, temperature, specific	Homework:
	 What effect does heating a substance have on the substance? 	latent heat	independent research
	 How can we reduce unwanted energy transfers? 		for poster
	 What do specific heat capacity and specific latent heat mean? 		
4	Core practical - investigating water.		MUM: poster
	Investigate the properties of water by determining the specific heat capacity of water and		
	obtaining a temperature-time graph for melting ice.		
5	Gas temperature and pressure	Kinetic energy, pascals, absolute zero, kelvin	
	What causes gas pressure?	temperature scale, kelvin	
	 How does the temperature of a gas affect its pressure? 		
	What is the difference between the kelvin and Celsius temperature scales?		
6 TS only	Pressure & Collision Theory		
	 Explain that gases can be compressed or expanded by pressure changes 		
	 Explain that the pressure of a gas produces a net force at right angles to any surface- 		
	 Explain the effect of changing the volume of a gas on the rate at which its particles. 		
	collide with the walls of its container and hence on the pressure produced by a		
	fixed mass of gas at constant temperature		
7 TS only	Boyle's Law		
	• Use the equation: $P_1V_1 = P_2V_2$ to calculate pressure or volume for gases of fixed		
	mass at constant temperature		
	• Explain why doing work on a gas can increase its temperature, including a bicycle		
	pump		
8	Bending and stretching.	Elastic, linear relationship, directly	
	 How do forces cause objects to change shape? 	proportional, non-linear	
	What is the difference between elastic and inelastic distortion?		
	What is the relationship between force and extension when an object is deformed?		
9	Core practical – Investigating springs.		
	Investigate the extension and work done when applying forces to a spring.		
1			

10	Extension and energy transfers.	Spring constant, work done	
	 What is the spring constant of a spring? 		
	 What is the equation that relates a force and extension of a spring? 		
	 How do we calculate the work done in stretching a spring? 		
11a TS	Pressure in fluids		
only	• Explain why atmospheric pressure varies with height above the Earth's surface		
	with reference to a simple model of the Earth's atmosphere		
	• Describe the pressure in a fluid as being due to the fluid and atmospheric pressure		
	Recall that the pressure in fluids causes a force normal to any surface		
	Describe and explain how pressure in fluids increases with depth and density		
11b TS	Calculating Pressure	Density, rho, gravitational field strength	
only	• Use P = F/A		
	• Use $P = h \times \rho \times g$		
12 TS	Upthrust	Archimedes	
only	• Explain why an object in a fluid is subject to an upwards force (upthrust) and relate		
	this to examples including objects that are fully immersed in a fluid (liquid or gas)		
	or partially immersed in a liquid		
	 Recall that the upthrust is equal to the weight of fluid displaced 		
	• Explain how the factors (upthrust, weight, density of fluid) influence whether an		
	object will float or sink		
13	Revision		Class assessment sheet
	End of Unit Test		EUT
	Test Feedback		Test feedback sheet